
Picklist - An enhanced listbox control for Borland’s Delphi

Introduction
The Delphi listbox control is basically a wrapper around the standard Windows listbox control. However, through 
the extensibility inherent in the VCL, we can enhance the listbox, or any other standard control, to improve its 
appearance or to add functionality.

I have often had to use multiple-selection listboxes in applications that I’ve written, and I never really liked how 
“busy” a listbox got once the user had selected a number of items. I preferred a listbox like the ones in WinCIM, 
which looked like a series of checkboxes, or the ones in Quicken, where in balancing your checkbook the items 
you’ve reconciled are shown in bold.

The Picklist control offers these two looks for selected items, and also offers a number of design-time and run-time 
improvements over the standard Windows control.

I’ve certainly downloaded more useful free stuff from CompuServe and the Internet than I can ever hope to upload, 
so I can’t see charging for Picklist. You may, therefore, use Picklist in your applications at no charge. You may 
freely distribute Picklist as long as all files are included intact and the copyright notice in the source code is 
maintained.

I hope the control is helpful to you!

How Picklist Works
Picklist operates just like a regular listbox, both to the developer and to the user, except that it offers a couple of 
new properties, a couple of new methods, and one new event. One of the new properties is called “SelectedStyle,” 
which offers these four choices:

· psStandard - the standard Windows listbox
· psCheckbox - a Checkbox appears to the left of each listbox string
· psBoldText - selected items appear in a bold font
· psOwnerDraw - the standard VCL listbox owner-draw mode.

The two new looks appear as shown below:

psCheckbox (Figure 1)



psBoldText (Figure 2)

Another useful feature for the developer is the easy implementation of tab stops. The standard Delphi listbox does 
not recognize the tab character embedded in listbox strings. With the Picklist, there is a property called “UseTabs” 
which allows you to have the listbox recognize tabs. There is also an easy way to set the tab widths. The Windows 
API function that sets the tabs uses device units (basically pixels). But how do you figure out how many pixels over 
to set the tab stop for a column of, say, eight characters? And what if you decide to change the font size?

Picklist lets you set a simple property to establish the tab stops, and even better, lets you see the result at design 
time. Tab stops are set using the “TabStops” property, which is a list of integral values separated by semicolons (e.g, 
“10;24;48”). The numbers represent the number of characters you want for the tab stop, rather than the number of 
pixels. The control will automatically calculate the appropriate pixel values based on the width of an average 
character using the listbox font and font size.

Picklist also offers an easy way to implement “Select All” and “Clear Selection” commands. The control has 
methods called, appropriately enough, “SelectAll” and “ClearSelection.” If the Picklist is either MultiSelect or 
ExtendedSelect, invoking these methods will either select all items or remove the selection from all items very 
quickly. In addition, Picklist fires an “OnChange” event when the selection changes (Thanks to John Newlin for 
posting the original code for the “OnChange” method, which I have shamelessly copied virtually note for note.)

Reference
Properties

Align Hint SelCount
BorderStyle IntegralHeight Selected
Canvas ItemIndex SelectedStyle
Color ItemHeight ShowHint
Columns Items Showing
ComponentIndex Left Sorted
Ctl3D MultiSelect TabOrder
Cursor Name TabStop
DragCursor Owner TabStops
DragMode Parent Tag
Enabled ParentColor Top
ExtendedSelect ParentCtl3D TopIndex
Font ParentFont UseTabStops
Height ParentShowHint Visible
HelpContext PopupMenu Width

[Note - the “Style” property from the standard listbox is not published; the SelectedStyle property replaces it]



SelectedStyle
property SelectedStyle: TSelectedStyle;

The SelectedStyle property (one of psStandard, psCheckbox, psBoldText, or psOwnerDraw) determines the 
physical appearance of the Picklist. The psStandard and psOwnerDraw are comparable to the standard 
lbStandard and lbOwnerDraw styles. The psCheckbox style appers as a checkbox before each list item (see 
Figure 1 above). The psBoldText style displays selected items in a bold font (see Figure 2 above).

Example:
MyPicklist.SelectedStyle := psCheckbox;

TabStops
property TabStops: string;

The TabStops property defines a list of tab stops for the Picklist control. The list is in the form of integers 
separated by semicolons. The values represent the number of characters, based on the width of the average 
character for the current font and font size. If the property cannot be parsed as a list of semicolon-separated 
integers, the control will raise an exception. If only one value is provided, tab stops will be established at each 
interval of that value (e.g., in the second example below tab stops will be set every twelve characters).

Example:
MyPickList.TabStops := ‘12;24;48’; {sets tabstops at 12, 24, and 48}
MyPickList.TabStops := ‘12’ {sets tabstops every 12 
characters};

UseTabStops
property UseTabStops: boolean;

The UseTabStops property allows the Picklist to interpret tab characters (#9) embedded in the listbox strings.

Methods
BeginDrag GetTextLen ScrollBy
BringToFront Hide SelectAll
Clear ItemAtPos SendToBack
ClearSelection Invalidate SetBounds
ClientToScreen Refresh SetFocus
Dragging Repaint SetTextBuf
EndDrag ScaleBy Show
GetTextBuf ScreenToClient Update

ClearSelection
procedure ClearSelection;

Unselects all items in the Picklist. This method uses a Windows API call to clear the selections very quickly. 
This method is ignored if the Picklist is not ExtendedSelect or MultiSelect.

Example:
MyPickList.ClearSelection;



SelectAll
procedure SelectAll

Selects all items in a Picklist. This method uses a Windows API call to set the selections very quickly. This 
method is ignored if the Picklist is not ExtendedSelect or MultiSelect.

Example:
MyPickList.SelectAll;

Events
OnChange OnEndDrag OnMeasureItem
OnClick OnEnter OnMouseDown
OnDblClick OnExit OnMouseMove
OnDragDrop OnKeyDown OnMouseUp
OnDragOver OnKeyPress
OnDrawItem OnKeyUp

OnChange
property OnChange: TNotifyEvent;

(See online help or VCL Reference, pp. 508ff.)


